Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals

نویسندگان

  • Shi-Han Zheng
  • Rui-Qiang Wang
  • Min Zhong
  • Hou-Jian Duan
چکیده

Currently, Weyl semimetals (WSMs) are drawing great interest as a new topological nontrivial phase. When most of the studies concentrated on the clean host WSMs, it is expected that the dirty WSM system would present rich physics due to the interplay between the WSM states and the impurities embedded inside these materials. We investigate theoretically the change of local density of states in three-dimensional Dirac and Weyl bulk states scattered off a quantum impurity. It is found that the quantum impurity scattering can create nodal resonance and Kondo peak/dip in the host bulk states, remarkably modifying the pristine spectrum structure. Moreover, the joint effect of the separation of Weyl nodes and the Friedel interference oscillation causes the unique battering feature. We in detail an- alyze the different contribution from the intra- and inter-node scattering processes and present various scenarios as a consequence of competition between them. Importantly, these behaviors are sensitive significantly to the displacement of Weyl nodes in energy or momentum, from which the distinctive fingerprints can be extracted to identify various semimetal materials experimentally by employing the scanning tunneling microscope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helical Spin Order from Topological Dirac and Weyl Semimetals.

We study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible mann...

متن کامل

Nonlocal Coulomb drag in Weyl semimetals

Nonlocality is one of the most striking signatures of the topological nature of Weyl semimetals. We propose to probe the nonlocality in these materials via a measurement of a magnetic-field-dependent Coulomb drag between two sheets of graphene which are separated by a three-dimensional slab of Weyl semimetal. We predict a mechanism of Coulomb drag, based on cyclotron orbits that are split betwe...

متن کامل

Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals.

In a magnetic field, electrons in metals repeatedly traverse closed magnetic orbits around the Fermi surface. The resulting oscillations in the density of states enable powerful experimental techniques for measuring a metal's Fermi surface structure. On the other hand, the surface states of Weyl semimetals consist of disjoint, open Fermi arcs raising the question of whether they can be observed...

متن کامل

Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals.

We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron-electron scattering time is faster than the electron-impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory...

متن کامل

Klein tunneling in Weyl semimetals under the influence of magnetic field

Klein tunneling refers to the absence of normal backscattering of electrons even under the case of high potential barriers. At the barrier interface, the perfect matching of electron and hole wavefunctions enables a unit transmission probability for normally incident electrons. It is theoretically and experimentally well understood in two-dimensional relativistic materials such as graphene. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016